Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 223(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376465

RESUMO

DNA methylation (DNAme) is a key epigenetic mark that regulates critical biological processes maintaining overall genome stability. Given its pleiotropic function, studies of DNAme dynamics are crucial, but currently available tools to interfere with DNAme have limitations and major cytotoxic side effects. Here, we present cell models that allow inducible and reversible DNAme modulation through DNMT1 depletion. By dynamically assessing whole genome and locus-specific effects of induced passive demethylation through cell divisions, we reveal a cooperative activity between DNMT1 and DNMT3B, but not of DNMT3A, to maintain and control DNAme. We show that gradual loss of DNAme is accompanied by progressive and reversible changes in heterochromatin, compartmentalization, and peripheral localization. DNA methylation loss coincides with a gradual reduction of cell fitness due to G1 arrest, with minor levels of mitotic failure. Altogether, this system allows DNMTs and DNA methylation studies with fine temporal resolution, which may help to reveal the etiologic link between DNAme dysfunction and human disease.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , DNA Metiltransferase 3A , Epigenômica , Humanos , Divisão Celular , Heterocromatina/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA Metiltransferase 3A/genética , Linhagem Celular
2.
Noncoding RNA ; 8(5)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36287115

RESUMO

Pseudouridylation is one of the most abundant modifications found in RNAs. To identify the Pseudouridylation sites (Psi) in RNAs, several techniques have been developed, but the most common and robust is the CMC (N-cyclohexyl-N'-(2-morpholinoethyl)carbodiimide) treatment, which consists in the addition of an adduct on Psi that inhibits the reverse transcription. Here, we describe a turnkey method and a tool to design the bridging oligo (DBO), which is somewhat difficult to design. Finally, we propose a trouble-shooting guide to help users.

3.
FEBS J ; 289(7): 1858-1875, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34739170

RESUMO

Cell cycle progression requires control of the abundance of several proteins and RNAs over space and time to properly transit from one phase to the next and to ensure faithful genomic inheritance in daughter cells. The proteasome, the main protein degradation system of the cell, facilitates the establishment of a proteome specific to each phase of the cell cycle. Its activity also strongly influences transcription. Here, we detected the upregulation of repetitive RNAs upon proteasome inhibition in human cancer cells using RNA-seq. The effect of proteasome inhibition on centromeres was remarkable, especially on α-Satellite RNAs. We showed that α-Satellite RNAs fluctuate along the cell cycle and interact with members of the cohesin ring, suggesting that these transcripts may take part in the regulation of mitotic progression. Next, we forced exogenous overexpression and used gapmer oligonucleotide targeting to demonstrate that α-Sat RNAs have regulatory roles in mitosis. Finally, we explored the transcriptional regulation of α-Satellite DNA. Through in silico analyses, we detected the presence of CCAAT transcription factor-binding motifs within α-Satellite centromeric arrays. Using high-resolution three-dimensional immuno-FISH and ChIP-qPCR, we showed an association between the α-Satellite upregulation and the recruitment of the transcription factor NFY-A to the centromere upon MG132-induced proteasome inhibition. Together, our results show that the proteasome controls α-Satellite RNAs associated with the regulation of mitosis.


Assuntos
Complexo de Endopeptidases do Proteassoma , RNA Satélite , Centrômero/genética , Centrômero/metabolismo , DNA Satélite/genética , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Satélite/genética , Regulação para Cima
4.
Cell Death Dis ; 12(10): 896, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599155

RESUMO

Centromeres are defined by chromatin containing the histone H3 variant CENP-A assembled onto repetitive α-satellite sequences, which are actively transcribed throughout the cell cycle. Centromeres play an essential role in chromosome inheritance and genome stability through coordinating kinetochores assembly during mitosis. Structural and functional alterations of the centromeres cause aneuploidy and chromosome aberrations which can induce cell death. In human cells, the tumor suppressor BRCA1 associates with centromeric chromatin in the absence of exogenous damage. While we previously reported that BRCA1 contributes to proper centromere homeostasis, the mechanism underlying its centromeric function and recruitment was not fully understood. Here, we show that BRCA1 association with centromeric chromatin depends on the presence of R-loops, which are non-canonical three-stranded structures harboring a DNA:RNA hybrid and are frequently formed during transcription. Subsequently, BRCA1 counteracts the accumulation of R-loops at centromeric α-satellite repeats. Strikingly, BRCA1-deficient cells show impaired localization of CENP-A, higher transcription of centromeric RNA, increased breakage at centromeres and formation of acentric micronuclei, all these features being R-loop-dependent. Finally, BRCA1 depletion reveals a Rad52-dependent hyper-recombination process between centromeric satellite repeats, associated with centromere instability and missegregation. Altogether, our findings provide molecular insights into the key function of BRCA1 in maintaining centromere stability and identity.


Assuntos
Proteína BRCA1/metabolismo , Centrômero/metabolismo , Estruturas R-Loop , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , DNA Satélite/genética , Humanos , Modelos Biológicos , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Recombinação Genética/genética
5.
Noncoding RNA ; 7(3)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34564318

RESUMO

Small non-coding RNAs (sncRNAs) represent an important class of regulatory RNAs involved in the regulation of transcription, RNA splicing or translation. Among these sncRNAs, small nucleolar RNAs (snoRNAs) mostly originate from intron splicing in humans and are central to posttranscriptional regulation of gene expression. However, the characterization of the complete repertoire of sncRNAs in a given cellular context and the functional annotation of the human transcriptome are far from complete. Here, we report the large-scale identification of sncRNAs in the size range of 50 to 200 nucleotides without a priori on their biogenesis, structure and genomic origin in the context of normal human muscle cells. We provided a complete set of experimental validation of novel candidate snoRNAs by evaluating the prerequisites for their biogenesis and functionality, leading to their validation as genuine snoRNAs. Interestingly, we also found intergenic snoRNAs, which we showed are in fact integrated into candidate introns of unannotated transcripts or degraded by the Nonsense Mediated Decay pathway. Hence, intergenic snoRNAs represent a new type of landmark for the identification of new transcripts that have gone undetected because of low abundance or degradation after the release of the snoRNA.

6.
Prog Mol Subcell Biol ; 60: 169-201, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34386876

RESUMO

Centromeres are chromosomal regions that are essential for the faithful transmission of genetic material through each cell division. They represent the chromosomal platform on which assembles a protein complex, the kinetochore, which mediates attachment to the mitotic spindle. In most organisms, centromeres assemble on large arrays of tandem satellite repeats, although their DNA sequences and organization are highly divergent among species. It has become evident that centromeres are not defined by underlying DNA sequences, but are instead epigenetically defined by the deposition of the centromere-specific histone H3 variant, CENP-A. In addition, and although long regarded as silent chromosomal loci, centromeres are in fact transcriptionally competent in most species, yet at low levels in normal somatic cells, but where the resulting transcripts participate in centromere architecture, identity, and function. In this chapter, we discuss the various roles proposed for centromere transcription and their transcripts, and the potential molecular mechanisms involved. We also discuss pathological cases in which unscheduled transcription of centromeric repeats or aberrant accumulation of their transcripts are pathological signatures of chromosomal instability diseases. In sum, tight regulation of centromeric satellite repeats transcription is critical for healthy development and tissue homeostasis, and thus prevents the emergence of disease states.


Assuntos
Centrômero , Cromatina , Centrômero/genética , Proteína Centromérica A/genética , Cinetocoros , Transcrição Gênica/genética
8.
Int J Mol Sci ; 22(7)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916664

RESUMO

DNA methylation (DNAme) profiling is used to establish specific biomarkers to improve the diagnosis of patients with inherited neurodevelopmental disorders and to guide mutation screening. In the specific case of mendelian disorders of the epigenetic machinery, it also provides the basis to infer mechanistic aspects with regard to DNAme determinants and interplay between histone and DNAme that apply to humans. Here, we present comparative methylomes from patients with mutations in the de novo DNA methyltransferases DNMT3A and DNMT3B, in their catalytic domain or their N-terminal parts involved in reading histone methylation, or in histone H3 lysine (K) methylases NSD1 or SETD2 (H3 K36) or KMT2D/MLL2 (H3 K4). We provide disease-specific DNAme signatures and document the distinct consequences of mutations in enzymes with very similar or intertwined functions, including at repeated sequences and imprinted loci. We found that KMT2D and SETD2 germline mutations have little impact on DNAme profiles. In contrast, the overlapping DNAme alterations downstream of NSD1 or DNMT3 mutations underlines functional links, more specifically between NSD1 and DNMT3B at heterochromatin regions or DNMT3A at regulatory elements. Together, these data indicate certain discrepancy with the mechanisms described in animal models or the existence of redundant or complementary functions unforeseen in humans.


Assuntos
Metilação de DNA/genética , Doenças Genéticas Inatas/genética , Histonas/genética , Mutação , Doenças Raras/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Proteínas de Ligação a DNA/genética , Doenças Genéticas Inatas/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Humanos , Proteínas de Neoplasias/genética , Doenças Raras/metabolismo
9.
Sci Rep ; 10(1): 17865, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082427

RESUMO

Immunodeficiency, centromeric instability, facial anomalies (ICF) syndrome is a rare autosomal recessive disorder that is caused by mutations in either DNMT3B, ZBTB24, CDCA7, HELLS, or yet unidentified gene(s). Previously, we reported that the CDCA7/HELLS chromatin remodeling complex facilitates non-homologous end-joining. Here, we show that the same complex is required for the accumulation of proteins on nascent DNA, including the DNMT1/UHRF1 maintenance DNA methylation complex as well as proteins involved in the resolution or prevention of R-loops composed of DNA:RNA hybrids and ssDNA. Consistent with the hypomethylation state of pericentromeric repeats, the transcription and formation of aberrant DNA:RNA hybrids at the repeats were increased in ICF mutant cells. Furthermore, the ectopic expression of RNASEH1 reduced the accumulation of DNA damage at a broad range of genomic regions including pericentromeric repeats in these cells. Hence, we propose that hypomethylation due to inefficient DNMT1/UHRF1 recruitment at pericentromeric repeats by defects in the CDCA7/HELLS complex could induce pericentromeric instability, which may explain a part of the molecular pathogenesis of ICF syndrome.


Assuntos
Centrômero , Dano ao DNA/fisiologia , DNA Helicases/fisiologia , DNA/genética , Proteínas Nucleares/fisiologia , RNA/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA Helicases/genética , Metilação de DNA , Face/anormalidades , Células HEK293 , Humanos , Proteínas Nucleares/genética , Hibridização de Ácido Nucleico , Doenças da Imunodeficiência Primária/genética , Proteínas Repressoras/genética , Ubiquitina-Proteína Ligases/genética
10.
Hum Mol Genet ; 29(19): 3197-3210, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-32916696

RESUMO

The most distal 2 kb region in the majority of human subtelomeres contains CpG-rich promoters for TERRA, a long non-coding RNA. When the function of the de novo DNA methyltransferase DNMT3B is disrupted, as in ICF1 syndrome, subtelomeres are abnormally hypomethylated, subtelomeric heterochromatin acquires open chromatin characteristics, TERRA is highly expressed, and telomeres shorten rapidly. In this study, we explored whether the regulation of subtelomeric epigenetic characteristics by DNMT3B is conserved between humans and mice. Studying the DNA sequence of the distal 30 kb of the majority of murine q-arm subtelomeres indicated that these regions are relatively CpG-poor and do not contain TERRA promoters similar to those present in humans. Despite the lack of human-like TERRA promoters, we clearly detected TERRA expression originating from at least seven q-arm subtelomeres, and at higher levels in mouse pluripotent stem cells in comparison with mouse embryonic fibroblasts (MEFs). However, these differences in TERRA expression could not be explained by differential methylation of CpG islands present in the TERRA-expressing murine subtelomeres. To determine whether Dnmt3b regulates the expression of TERRA in mice, we characterized subtelomeric methylation and associated telomeric functions in cells derived from ICF1 model mice. Littermate-derived WT and ICF1 MEFs demonstrated no significant differences in subtelomeric DNA methylation, chromatin modifications, TERRA expression levels, telomere sister chromatid exchange or telomere length. We conclude that the epigenetic characteristics of murine subtelomeres differ substantially from their human counterparts and that TERRA transcription in mice is regulated by factors others than Dnmt3b.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Face/anormalidades , Fibroblastos/patologia , Doenças da Imunodeficiência Primária/patologia , Telômero/fisiologia , Fatores de Transcrição/metabolismo , Animais , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas de Ligação a DNA/genética , Face/patologia , Fibroblastos/metabolismo , Humanos , Camundongos , Doenças da Imunodeficiência Primária/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Transcrição Gênica
11.
RNA Biol ; 17(12): 1707-1720, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32559119

RESUMO

The findings that an RNA is not necessarily either coding or non-coding, or that a precursor RNA can produce different types of mature RNAs, whether coding or non-coding, long or short, have challenged the dichotomous view of the RNA world almost 15 years ago. Since then, and despite an increasing number of studies, the diversity of information that can be conveyed by RNAs is rarely searched for, and when it is known, it remains largely overlooked in further functional studies. Here, we provide an update with prominent examples of multiple functions that are carried by the same RNA or are produced by the same precursor RNA, to emphasize their biological relevance in most living organisms. An important consequence is that the overall function of their locus of origin results from the balance between various RNA species with distinct functions and fates. The consideration of the molecular basis of this multiplicity of information is obviously crucial for downstream functional studies when the targeted functional molecule is often not the one that is believed.


Assuntos
Regulação da Expressão Gênica , RNA/genética , Animais , Evolução Molecular , Éxons , Humanos , Íntrons , Fases de Leitura Aberta , Splicing de RNA , RNA Circular , RNA não Traduzido/genética
12.
Am J Hum Genet ; 106(3): 356-370, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32109418

RESUMO

Genetic syndromes frequently present with overlapping clinical features and inconclusive or ambiguous genetic findings which can confound accurate diagnosis and clinical management. An expanding number of genetic syndromes have been shown to have unique genomic DNA methylation patterns (called "episignatures"). Peripheral blood episignatures can be used for diagnostic testing as well as for the interpretation of ambiguous genetic test results. We present here an approach to episignature mapping in 42 genetic syndromes, which has allowed the identification of 34 robust disease-specific episignatures. We examine emerging patterns of overlap, as well as similarities and hierarchical relationships across these episignatures, to highlight their key features as they are related to genetic heterogeneity, dosage effect, unaffected carrier status, and incomplete penetrance. We demonstrate the necessity of multiclass modeling for accurate genetic variant classification and show how disease classification using a single episignature at a time can sometimes lead to classification errors in closely related episignatures. We demonstrate the utility of this tool in resolving ambiguous clinical cases and identification of previously undiagnosed cases through mass screening of a large cohort of subjects with developmental delays and congenital anomalies. This study more than doubles the number of published syndromes with DNA methylation episignatures and, most significantly, opens new avenues for accurate diagnosis and clinical assessment in individuals affected by these disorders.


Assuntos
Metilação de DNA , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Estudos de Coortes , Heterogeneidade Genética , Humanos , Síndrome
13.
Essays Biochem ; 63(6): 757-771, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31387943

RESUMO

Despite the tremendous progress made in recent years in assembling the human genome, tandemly repeated DNA elements remain poorly characterized. These sequences account for the vast majority of methylated sites in the human genome and their methylated state is necessary for this repetitive DNA to function properly and to maintain genome integrity. Furthermore, recent advances highlight the emerging role of these sequences in regulating the functions of the human genome and its variability during evolution, among individuals, or in disease susceptibility. In addition, a number of inherited rare diseases are directly linked to the alteration of some of these repetitive DNA sequences, either through changes in the organization or size of the tandem repeat arrays or through mutations in genes encoding chromatin modifiers involved in the epigenetic regulation of these elements. Although largely overlooked so far in the functional annotation of the human genome, satellite elements play key roles in its architectural and topological organization. This includes functions as boundary elements delimitating functional domains or assembly of repressive nuclear compartments, with local or distal impact on gene expression. Thus, the consideration of satellite repeats organization and their associated epigenetic landmarks, including DNA methylation (DNAme), will become unavoidable in the near future to fully decipher human phenotypes and associated diseases.


Assuntos
Metilação de DNA/fisiologia , DNA/metabolismo , Face/anormalidades , Distrofia Muscular Facioescapuloumeral/genética , Doenças da Imunodeficiência Primária/genética , DNA/genética , Epigênese Genética/fisiologia , Face/fisiopatologia , Regulação da Expressão Gênica/fisiologia , Humanos , Repetições de Microssatélites , Distrofia Muscular Facioescapuloumeral/fisiopatologia , Doenças da Imunodeficiência Primária/fisiopatologia
14.
Clin Genet ; 95(2): 210-220, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30456829

RESUMO

Alterations in epigenetic landscapes are hallmarks of many complex human diseases, yet, it is often challenging to assess the underlying mechanisms and causal link with clinical manifestations. In this regard, monogenic diseases that affect actors of the epigenetic machinery are of considerable interest to learn more about the etiology of complex traits. Spectacular breakthroughs in medical genetics are largely the result of advances in genome-wide approaches to identify genomic and epigenomic alterations in patients. These approaches have enabled the identification of an ever-increasing number of hereditary disorders caused by defects in the establishment of epigenetic marks early during development or in the perpetuation of such marks at later stages. We focus our review on particular cases where DNA methylation landscapes are altered at the genome scale, whether it is a direct consequence of mutations in DNA methyltransferases (DNMT) or that it reflects initial alterations of chromatin states or guiding factors caused by mutations in chromatin modifiers or transcription factors. Collectively, increased knowledge of these rare diseases will add to our understanding of the genetic determinants of DNA methylation in humans. Moreover, investigating how perturbations to these determinants affect genome function has far-reaching potential to understand various complex human diseases.


Assuntos
Metilação de DNA , Epigênese Genética , Predisposição Genética para Doença , Doenças Raras/genética , Animais , Cromatina/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , Regulação da Expressão Gênica , Estudos de Associação Genética , Marcadores Genéticos , Humanos , Mutação , Doenças Raras/diagnóstico , Fatores de Transcrição/metabolismo
15.
J Clin Invest ; 129(1): 78-92, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30307408

RESUMO

Mutations in CDCA7 and HELLS that respectively encode a CXXC-type zinc finger protein and an SNF2 family chromatin remodeler cause immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome types 3 and 4. Here, we demonstrate that the classical nonhomologous end joining (C-NHEJ) proteins Ku80 and Ku70, as well as HELLS, coimmunoprecipitated with CDCA7. The coimmunoprecipitation of the repair proteins was sensitive to nuclease treatment and an ICF3 mutation in CDCA7 that impairs its chromatin binding. The functional importance of these interactions was strongly suggested by the compromised C-NHEJ activity and significant delay in Ku80 accumulation at DNA damage sites in CDCA7- and HELLS-deficient HEK293 cells. Consistent with the repair defect, these cells displayed increased apoptosis, abnormal chromosome segregation, aneuploidy, centrosome amplification, and significant accumulation of γH2AX signals. Although less prominent, cells with mutations in the other ICF genes DNMT3B and ZBTB24 (responsible for ICF types 1 and 2, respectively) showed similar defects. Importantly, lymphoblastoid cells from ICF patients shared the same changes detected in the mutant HEK293 cells to varying degrees. Although the C-NHEJ defect alone did not cause CG hypomethylation, CDCA7 and HELLS are involved in maintaining CG methylation at centromeric and pericentromeric repeats. The defect in C-NHEJ may account for some common features of ICF cells, including centromeric instability, abnormal chromosome segregation, and apoptosis.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA Helicases/metabolismo , Metilação de DNA , Face/anormalidades , Síndromes de Imunodeficiência/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Apoptose/genética , Centrômero/genética , Centrômero/metabolismo , Centrômero/patologia , Segregação de Cromossomos/genética , Ilhas de CpG , Dano ao DNA , DNA Helicases/genética , Face/patologia , Feminino , Células HEK293 , Humanos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/patologia , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Masculino , Proteínas Nucleares/genética , Doenças da Imunodeficiência Primária
16.
Hum Mol Genet ; 27(20): 3568-3581, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30010917

RESUMO

Human telomeres and adjacent subtelomeres are packaged as heterochromatin. Subtelomeric DNA undergoes methylation during development by DNA methyltransferase 3B (DNMT3B), including the CpG-rich promoters of the long non-coding RNA (TERRA) embedded in these regions. The factors that direct DNMT3B methylation to human subtelomeres and maintain this methylation throughout lifetime are yet unknown. The importance of subtelomeric methylation is manifested through the abnormal telomeric phenotype in Immunodeficiency, Centromeric instability and Facial anomalies (ICF) syndrome type 1 patients carrying mutations in DNMT3B. Patient cells demonstrate subtelomeric hypomethylation, accompanied by elevated TERRA transcription, accelerated telomere shortening and premature senescence of fibroblasts. ICF syndrome can arise due to mutations in at least three additional genes, ZBTB24 (ICF2), CDCA7 (ICF3) and HELLS (ICF4). While pericentromeric repeat hypomethylation is evident in all ICF syndrome subtypes, the status of subtelomeric DNA methylation had not been described for patients of subtypes 2-4. Here we explored the telomeric phenotype in cells derived from ICF2-4 patients with the aim to determine whether ZBTB24, CDCA7 and HELLS also play a role in establishing and/or maintaining human subtelomeric methylation. We found normal subtelomeric methylation in ICF2-4 and accordingly low TERRA levels and unperturbed telomere length. Moreover, depleting the ICF2-4-related proteins in normal fibroblasts did not influence subtelomeric methylation. Thus, these gene products are not involved in establishing or maintaining subtelomeric methylation. Our findings indicate that human subtelomeric heterochromatin has specialized methylation regulation and highlight the telomeric phenotype as a characteristic that distinguishes ICF1 from ICF2-4.


Assuntos
Anormalidades Múltiplas/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA Helicases/genética , Metilação de DNA , Mutação , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Anormalidades Múltiplas/metabolismo , Adolescente , Adulto , Linhagem Celular , Centrômero , Criança , Pré-Escolar , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Helicases/metabolismo , Face/anormalidades , Fibroblastos , Heterocromatina/metabolismo , Humanos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/metabolismo , Lactente , Recém-Nascido , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Telômero/metabolismo , Adulto Jovem
18.
Sci Rep ; 8(1): 5776, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636490

RESUMO

Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) represent naive and primed pluripotency states, respectively, and are maintained in vitro by specific signalling pathways. Furthermore, ESCs cultured in serum-free medium with two kinase inhibitors (2i-ESCs) are thought to be the ground naïve pluripotent state. Here, we present a comparative study of the epigenetic and transcriptional states of pericentromeric heterochromatin satellite sequences found in these pluripotent states. We show that 2i-ESCs are distinguished from other pluripotent cells by a prominent enrichment in H3K27me3 and low levels of DNA methylation at pericentromeric heterochromatin. In contrast, serum-containing ESCs exhibit higher levels of major satellite repeat transcription, which is lower in 2i-ESCs and even more repressed in primed EpiSCs. Removal of either DNA methylation or H3K9me3 at PCH in 2i-ESCs leads to enhanced deposition of H3K27me3 with few changes in satellite transcript levels. In contrast, their removal in EpiSCs does not lead to deposition of H3K27me3 but rather removes transcriptional repression. Altogether, our data show that the epigenetic state of PCH is modified during transition from naive to primed pluripotency states towards a more repressive state, which tightly represses the transcription of satellite repeats.


Assuntos
DNA Satélite/metabolismo , Epigênese Genética , Camadas Germinativas/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Linhagem Celular , Metilação de DNA , Heterocromatina/genética , Metilação , Camundongos , Processamento de Proteína Pós-Traducional
19.
Hum Mol Genet ; 27(14): 2409-2424, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29659838

RESUMO

Alterations of DNA methylation landscapes and machinery are a hallmark of many human diseases. A prominent case is the ICF syndrome, a rare autosomal recessive immunological/neurological disorder diagnosed by the loss of DNA methylation at (peri)centromeric repeats and its associated chromosomal instability. It is caused by mutations in the de novo DNA methyltransferase DNMT3B in about half of the patients (ICF1). In the remainder, the striking identification of mutations in factors devoid of DNA methyltransferase activity, ZBTB24 (ICF2), CDCA7 (ICF3) or HELLS (ICF4), raised key questions about common or distinguishing DNA methylation alterations downstream of these mutations and hence, about the functional link between the four factors. Here, we established the first comparative methylation profiling in ICF patients with all four genotypes and we provide evidence that, despite unifying hypomethylation of pericentromeric repeats and a few common loci, methylation profiling clearly distinguished ICF1 from ICF2, 3 and 4 patients. Using available genomic and epigenomic annotations to characterize regions prone to loss of DNA methylation downstream of ICF mutations, we found that ZBTB24, CDCA7 and HELLS mutations affect CpG-poor regions with heterochromatin features. Among these, we identified clusters of coding and non-coding genes mostly expressed in a monoallelic manner and implicated in neuronal development, consistent with the clinical spectrum of these patients' subgroups. Hence, beyond providing blood-based biomarkers of dysfunction of ICF factors, our comparative study unveiled new players to consider at certain heterochromatin regions of the human genome.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , DNA Helicases/genética , Síndromes de Imunodeficiência/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Instabilidade Cromossômica/genética , Metilação de DNA/genética , Feminino , Genoma Humano/genética , Genótipo , Heterocromatina/genética , Humanos , Síndromes de Imunodeficiência/fisiopatologia , Masculino , Mutação , Neurogênese/genética
20.
Nucleic Acids Res ; 45(10): 5739-5756, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28334849

RESUMO

Hypomorphic mutations in DNA-methyltransferase DNMT3B cause majority of the rare disorder Immunodeficiency, Centromere instability and Facial anomalies syndrome cases (ICF1). By unspecified mechanisms, mutant-DNMT3B interferes with lymphoid-specific pathways resulting in immune response defects. Interestingly, recent findings report that DNMT3B shapes intragenic CpG-methylation of highly-transcribed genes. However, how the DNMT3B-dependent epigenetic network modulates transcription and whether ICF1-specific mutations impair this process remains unknown. We performed a transcriptomic and epigenomic study in patient-derived B-cell lines to investigate the genome-scale effects of DNMT3B dysfunction. We highlighted that altered intragenic CpG-methylation impairs multiple aspects of transcriptional regulation, like alternative TSS usage, antisense transcription and exon splicing. These defects preferentially associate with changes of intragenic H3K4me3 and at lesser extent of H3K27me3 and H3K36me3. In addition, we highlighted a novel DNMT3B activity in modulating the self-regulatory circuit of sense-antisense pairs and the exon skipping during alternative splicing, through interacting with RNA molecules. Strikingly, altered transcription affects disease relevant genes, as for instance the memory-B cell marker CD27 and PTPRC genes, providing us with biological insights into the ICF1-syndrome pathogenesis. Our genome-scale approach sheds light on the mechanisms still poorly understood of the intragenic function of DNMT3B and DNA methylation in gene expression regulation.


Assuntos
Processamento Alternativo , Anorexia/genética , Caquexia/genética , DNA (Citosina-5-)-Metiltransferases/genética , Anormalidades do Olho/genética , Histonas/genética , Síndromes de Imunodeficiência/genética , Mutação , RNA Mensageiro/genética , Dermatopatias/genética , Anorexia/imunologia , Anorexia/patologia , Linfócitos B/imunologia , Linfócitos B/patologia , Caquexia/imunologia , Caquexia/patologia , Linhagem Celular Transformada , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferases/imunologia , Metilação de DNA , Epigênese Genética , Anormalidades do Olho/imunologia , Anormalidades do Olho/patologia , Facies , Feminino , Histonas/imunologia , Humanos , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/patologia , Memória Imunológica , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/imunologia , Masculino , Regiões Promotoras Genéticas , RNA Mensageiro/imunologia , Dermatopatias/imunologia , Dermatopatias/patologia , Transcrição Gênica , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...